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1. I N T R O D U C T I O N  

I n  1938 W i g n e r  m i n t r o d u c e d  a m o d e l  fo r  m a t t e r  wh ich  is n o w  cal led  j e l l ium.  

O n e  supposes  tha t  t he  e lec t rons  in a sol id  p r o v i d e  a u n i f o r m ,  c o n s t a n t  cha rge  

b a c k g r o u n d  in wh ich  the  heav ie r  nucle i  m o v e .  T h e  H a m i l t o n i a n  fo r  the  

sys tem cons i s t ing  o f  N par t ic les  w i th  c o o r d i n a t e s  X = {xl .... , xN} in a th ree-  

d i m e n s i o n a l  d o m a i n  A is 

N 

H = (2m) -1  ~ p,Z + e2U(X) 
i=: l .  

N 

U(X) = ~ ix, - x j1-1  --  p ~ ( x , )  + �89 9(x)  dx  (1) 
i = l  
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and where 

p~(x) = P~A Ix - y l - l dy  

is the Coulomb potential produced by the background of  charge density p. 
Throughout  the following we shall set m = e 2 = 1, and h = 1 in the 

quantum case. Thus the Bohr radius is equal to unity and the energy unit, 
the Rydberg (Ry), is equal to one-half. The dimensionless length r~ is equal 
to [3/(47rO)]l/a. Whenever the distinction is necessary, we shall assume p > 0 
and that the particles are negative. 

We shall show that for neutral systems, i.e., plA] = N, the thermo- 
dynamic functions per unit volume (free energy, energy, entropy, pressure) 
exist as A --~ oo. 

It is also possible to consider the one- and two-dimensional versions of  
this problem, where the Coulomb potential Ix1-1 is replaced by - [ x  I and 
- ln lx [ ,  respectively. In the one-dimensional, classical case, Baxter (2~ calcu- 
lated the partition function exactly. For that case, Kunz (s~ showed that the 
one-particle distribution function exists and that it has crystalline ordering, 
i.e., the Wigner lattice exists for all temperatures. Brascamp and Lieb (4~ 
showed the same to be true in the quantum mechanical case for one-com- 
ponent fermions when fl is large enough. Although we do not deal with the 
one-dimensional problem here, our methods would apply in that case. In 
two dimensions there are difficulties connected with the long-range nature 
of  the - l n l x  I potential, and we shall not discuss this here. 

The problem of  jellium is closely related to the same problem for real 
matter treated by Lebowitz and Lieb ~5,6~,5 and their methods will be employed 
here. The difficulty with jellium is that the background is held rigid by 
definition and one cannot freely constrain the particles to lie in balls without 
at the same time imparting an enormous electrostatic energy to the system. 
On the other hand, the fixed background considerably simplifies the H- 
stability question. (Cf. Dyson and Lenard38)) The connection between the 
jeUium and the real matter problems is discussed by Narnhofer and 
Thirring. ~9~ 

In Section 2 we use H-stability to get an upper bound on the partition 
function Z. The H-stability itself is proved in the appendix. 

Section 3 deals with the classical case. We first treat a distinguished 
sequence of domains, which are balls, and then we treat general domains. 
The usual results are obtained, except that since the free energy is not a 
convex function of  the density for jellium, the compressibility can be negative 
and the grand canonical ensemble is not equivalent to the canonical ensemble. 

5 See also Penrose and Smith. C7) 
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As in Ref. 5, we show that a system with an excess charge Q ~ [A] 2Ia has an 
excess free energy -(2/3)-1Q2/C ' where C is the capacity of  A. 

In Section 4 we outline the proof  when weakly tempered potentials are 
also present. Although the thermodynamic limit exists in this case, we lose 
continuity in p--a t  least by our methods. This is an open question. The 
inclusion of  hard cores is also not covered by our method and this, too, is an 
open question. 

In Section 5 we explain the additional techniques needed for the quantum 
case. An open question here is to show the equivalence of different boundary 
conditions; we use Dirichlet conditions. A related problem is to show that 
the particle density and the electrostatic potential stay suitably bounded as 
N - +  oo. 

2. H - S T A B I L I T Y  

The condition of H-stability is that the Hamiltonian is bounded below 
by a constant times N. It is sufficient to require that the potential energy 
alone has this property, since the kinetic energy operator is positive. For  real 
matter one is obliged to consider the total Hamiltonian because the inter- 
action energy of a positive and a negative particle has no lower bound. The 
proof  of H-stability in this latter case is very difficult and was given by Dyson 
and Lenard ~8,1~ and recently a new proof  was given by Federbush5 m It is 
essential here that the electrons be fermions, thereby excluding classical 
particles. 

For jellium, on the other hand, one can easily find a lower bound on 
U, by using an idea due to OnsagerY 2~ This is given in the appendix. A 
different proof  and a different bound are also given in Ref. 10. Our bound is 

U > - 0 . 9 N / r s  (2) 

and we emphasize that this result holds for all N and all domains, connected 
or not, and requires only that the background have charge density (3/4~r)rj a 
or zero everywhere. This lower bound is surprisingly accurate. In Ref. 13 a 
numerical evaluation for the body-centered cubic lattice of particles in a 
uniform background gives 

Umin <~ - - 0 . 8 9 6 N / r ~  (3) 

when the system is neutral. 
The significance of the lower bound, and the only place it will be used 

here, is to establish an upper bound for the partition function Z, i.e., 
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where ~ is some constant and Z~a~ is the partition function of ideal, non- 
interacting particles. Thus, defining 

g = V -a l n Z  (5) 

for a domain of  volume V, one has that g is bounded above. 

3. CLASSICAL PARTICLES W I T H  PURELY 
C O U L O M B  FORCES 

3.1. Canonical  Ensemble (Spherical  Domains)  

B ~ Fix the density p. Let { k}k=o be a sequence of balls of radii Rk = 
Ro(1 + p)k, where p = 26 and the volume of  Bo = ]Bo] is p-~. Let Ark = 
(1 + p)ak be the number of particles in Bk, whence pk = Nk/[Bk[ = p. Let 
nj = pJ-l(1 + p)2j. According to Ref. 5, Section III, one can pack BK with 
uf=-o z (nK-j balls Bj) so that they do not overlap, and 

K - 1  

lim ]B~c[ -1 ~ nK_j[Bj[ = 1 (6) 
K ~ o o  j = 0  

The part of B~: not covered by the above packing will be called DK. 
At this point the principal difference between the proof  for the jellium 

model and the proof  for a system of  positive and negative particles appears. 
In the latter, the NK particles are constrained to be in the balls Bj, j < K, 
and the domain D~: is left empty. For jellium this cannot be done because the 
domain Dr  would then not be neutral and the electrostatic energy of  the 
system would be too large. Even though [D~:I/[BK] -+ 0 as K - +  ~ ,  Nz? 1 (the 
electrostatic energy of  DK) would go to infinity. 

We proceed as follows: Let Zk, k = 0, 1, 2, . . ,  be the configurational 
partition function of the ball Bk with N~ particles and with a uniform back- 
ground of density p: 

Zk = (Nk!)-~ f exp[ - f iU(xl  ..... XNk)] dxl ... dxN~ (7) 
a( Bk)Nk 

Let Z~: D be the configurational partition function of D~: with MK particles, 
where 

K = I  

MI~ = N~: - ~ ,  n~:_jN~ = NzcpK(a + p)-Xc (8) 
y = o  

DK is understood to have a uniform background of density p. Clearly, 
pDk = Mk and Mk/N~ -+ 0 exponentially fast. 

The fundamental inequality, to be found in Ref. 5, Section IIE, is that 
K = I  

In ZK /> ~ n~:_j In Zj + In Z~ v (9) 
i = 0  
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This inequality exploits Newton's electrostatic theorem and the fact that all 
the subdomains, except DK, are both spherical and neutral; therefore the 
average interdomain interaction is zero. 

The next step is to estimate ZK D. Using Jensen's inequality, 

lnZ~ D /> MK ln IDKI-  ln (MK!) -  fl(U)D~ 

where 

<w>o~ = ~M~(M~ - 1)lD,~l-~ff~ Ix - y[,1 dxdy  

- ~ M ~ l ~ l - ~ f  fo~ Ix - ~l -~ ~x ~ 

Since MK = p fD,~ dx, 

<~>o~ = -~pID~l-1 f fo~ jx - yL-1 dx dy < 0 

Thus, defining 

and 

we have, for large K, 

(10) 

(11) 

g~ = IB~I-1 In ZK (12) 

r = p(1 + p ) - i  < 1 (13) 

K - 1  

g~c /> p-1 ~ 7K-,gj + rKp(1 _ In p) (14) 
5 = 0  

where Stirling's formula for M~:I has been used. As shown in Ref. 5, Section 
IVD, this inequality implies that gr has a limit, g(fl, p), for this special, 
p-dependent sequence of domains BK. 

3.2. Canonical Ensemble (General Domains)  

Let p be fixed. We take a regular sequence of domains {Aj}~~ 1 tending to 
infinity which satisfies conditions A (Van Hove limit) and B (ball condition) 
given in Ref. 5, Section V, and which also satisfies the condition that p[ Aj[ = 
j. To get a lower bound on Z(Aj.), we pack A t with balls B~ of the standard 
sequence appropriate to p given above and distribute the j particles with 
constant density in the balls and in Dj, which is the complement of the Bk 
in A s. As above, we have 

]Aj]g s - In Z(A~) >~ ~ mjk In Z~ + ln Z~ D (15) 
k 
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where mje is the number of balls Be in the packing of As. Met Mj be the 
number of particles in Dj, i.e., 

Mj = j - ~ mje(1 + p)Ze 
k 

Then, as before, 

lnZs D >1 M s lnlDs] - In(Mjt) - 18(U)o, (16) 

and (U)oj  ~< 0. Following the proof in Ref. 5, Section V, 

lim infg  s >t g(~, p) (17) 

where g(/3, p) is the limit for the standard balls. 
An upper bound to Z(As) can be found by embedding Aj in a minimum 

standard ball BK(j) and packing B~c(s)\Aj with balls Be. Let Dj be as before, 
i.e., BK(1,)I(At k,.) Bt:) and MS, = plOsl. Then 

In Zzq1.~ /> In Z(A1,) + ~ m~ In Ze + MS, lnlD1, [ - In(M1,! ) 

- I ~ ( U ( D 1 , ,  D j ) )  - B ( U ( D 1 ,  , A~)) (18) 
In the last four terms we use Jensen's inequality for the integration over the 
coordinates of the particles in D1,: (U(D~, Ds)) is the average Coulomb 
energy in D1. in an ensemble in which the particles are free; (U(D1, , As) ) is 
the average interdomain interaction between D1, and At, when the particles 
in D s are free and the particles in At, are fully interacting. The last term is 
zero because the average total charge distribution in D s is zero. The term 
(U(D1,, Dj)) is negative as before. Thus we can use the argument of Ref. 5, 
Section V, to conclude that 

lim sup gs ~< g(~, P) (19) 
1,-~ 0o 

The result of these inequalities is that for any regular sequence of 
domains {As} and particle numbers Ns = j such that N s = plAt,I, 

lim g1, = g(/3, o) (20) 
1"...oo 

While this establishes the existence and shape independence of the thermo- 
dynamic limit for each fixed p, we do not yet know anything about the 
dependence of g(/3, 0) on • or whether the limit is uniform in o. We next 
discuss how such a relationship can be obtained. 

3.3. Scal ing Relat ions 

Let (Aj}~= 1 be a regular sequence of domains for a given p, i.e., p lAj] = j. 
Let ~/ > 0 be fixed and define the following: 

p' = p~73, /3' = fl~/-1, A /  = ~7-~As = {~-lxlx ~ As} (21) 
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Thus p ' IA/[  = j.  
I f  one considers the integral defining Z(~, p; Aj) and changes integration 

variables x to y = 7/-~x, then one derives 

IAjlg(fl, p; Aj) = lA/lg(/3n-*, p,73; A;') + 3jln ~/ (22) 

Since the thermodynamic limit is independent of  the sequence of  domains, 
one has that 

g(5, P) = ~-~g(5~ -1, P,?) + 3p In ~ (23) 

for all 7/ > 0. Now let ~/ = p-,/a, whence 

gO, P) = pg(flp~/a, I) - e In p = eg(,Sp *Is) + p(l - In p) (24) 

where g( .)  - g(. ,  1) - 1. 
From the basic definition ofg(fi, p; A;) one has that these functions, and 

hence their limits also, are convex functions of ft. Therefore the function 
t -+ ~(t) is convex in t. 

For finite j, let {A/} be a regular sequence of  domains with ]A/I = j, 
and define 

g(/3) = g(fl, 1; a / )  -- 1 (25) 

Then 

lim gj(3) = g(fl) (26) 
j--~ aO 

3.4. Properties of the Thermodynamic Limit 

3.4.1. Uniformity of the Limit. Since ~(t) is bounded on finite t intervals, 
its convexity implies that it is continuous. Furthermore, each ~j(-) has the 
same properties from (25). Thus the sequence of  functions ~j(flpl/a) is con- 
tinuous in p and has a continuous limit ~(3p lj3) and the limit is essentially 
monotone as one sees from (14). Hence Dini's theorem tells us that the limit 
is uniform on compact p intervals. 

3.4.2. Pressure and Compressibility. For  a normal thermodynamic sys- 
tem, g(/9, p) is concave in p. This implies positive compressibility and, since 
the pressure is zero at zero density, it implies positive pressure. For jellium 
this is unfortunately not true. Using (24), and assuming differentiability, we 
obtain 

fle/p = 1 -- ~flpim~(flplm) (27) 

where the dot denotes derivative, and 

apdP -94 fl29 p21aff(flplza) (28) 
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Note that g > 0. This implies that for t > 0, g(t) >i g(0) = 0. These formulas 
show that P and ~c can have either sign. In fact, for fixed/3, they are both 
negative for sufficiently high density since, from (3), one sees that the potential 
energy will go as p4/a for large p, i.e., g(t) ~ t for large t. Since g(t) is mono- 
tone, tff,(t) is also monotone. This implies that there is always exactly one 
value, (/3p~/3)~, of  ~p~/a at which the pressure is zero. Without any constraint 
on the volume, classicaljellium would collapse to a density p~/a = (/3p~/3)d3-1. 
This fact is not unrelated to the absence of H-stability for real matter without 
Fermi statistics. 

3.5. Systems Tha t  Are  Not  Neut ra l  

We wish to consider a sequence of systems with fixed background 
density p, but where N # plAI. Define Qj - - N j  + p]Aj[ to be the net 
charge in Aj, and consider a sequence of  domains Aj &fixed shape of  
capacitance Cj = elAjl 1/a. If  Qj]Aj[-2/a __~ ~, the result to be proved is that 

gj(/3, p) --~ g(/3, p) - �89 (29) 

Note that ~ can have either sign. If  lcrl = ~ ,  then gj(/3, p) -~ - o r .  This last 
statement is easily proved by noting that ]Aj]-lmin{U(x)lx~ ~ A j} - -~+~  
when l Qjl IAj[ -~/3 _+ + oo. 

In order to simplify matters we shall prove the theorem only for balls, 
in which case c = (4~r/3)- 1/3. 

Let B be a ball of radius R and let B' be a concentric ball of  radius 
R' > R. Note that a uniform charge density r placed in Z = B'\B produces a 
constant potential rq)(N) inside B. This same charge density in Z has a self- 
energy r2S(Z). If  R -+ oo and R'/R --> 1, then 

�9 (~)l~l/S(~) -~ 2 (30) 

Let Z(N, B') be the partition function for N particles in B' with back- 
ground density p. A lower bound to Z(N, B') can be obtained as follows: 

1. Restrict the configurations to N1 particles in B and N2 = N -  N1 
particles in Z. 

2. Let UI(X1) [resp. U2(X2)] be the potential energy of the particles and 
background in B [resp. Z] and let U12(X1,X2) be the interdomain energy, 
where X~ and X2 are the particle coordinates. Then 

Z(N, B') >1 (NI! N2!)-1(  exp[-/3Ul(Xl)] 
JB N1 

x f exp{-/3[U2(X2) + U12(X1, X2)]} (31) 
N2 



The Thermodynamic Limit for Jellium 299 

3. Use Jensen's inequality on the second integral together with the 
aforementioned constancy of  the potential ~(Z). Thus, 

lnZ(N, ~') >1 In Z(N~, B) + ln(lXl"~/U2!) 

- / 3 ~ ( E ) [ p  - N21Z]-I][pIB' t - Nil (32) 

Now we consider a sequence of  balls B s of  radii Rj with background 
density p and particle numbers Nj = j ,  j = 1, 2 ..... For Qs = - J  + p[Bj] 
negative we first use (32) with N = j, B' = Bj, R = Rj - 1, and N~ = pIB[. 
Then we use (32) with N = N1 = j,  B = Bj, and [B' I = tip. When Qj > 0, 
we first use (32) with N = N~ = L B'  = By, and [B] = tip. Then we use (32) 
with N~ = L  B = Bj, R'  = Rj + 1, and N = ]B'Ip. Using the fact that 
QABj 1-2/a ~ ~ and (30), we obtain the desired result (29). 

3.6. Microcanoniea l  Ensemble 

The existence of  the thermodynamic limit for the microcanonieal en- 
semble can be demonstrated using the methods of Ref. 5, Section VIII.  
There, the energy as a function of entropy was given for the quantum case. 
The corresponding classical equation is as follows: Let I '(N, A) = (A x R3) z~ 
be the phase space (including momentum). For cr real, let 

A(o, N, A) = {A c P(N, A)It~(A ) = e ~lAI} (33) 

where/z is Lebesgue measure. Let 

where 

Then we define 

E(A, N, A) = IAI-~fA H(X, l ' )e - ~ j  (34) 

H(X, P) = U(X) + ~ pi2/2m 

e((r, N, A) --- inf{E(A, N, A)[A ~ 2x(g, N, A)} (35) 

to be the energy per unit volume as a function of the entropy per unit volume, 
O'. 

Obviously, when A~ and A2 are disjoint, 

A(r + r N1 + N2, A1 w h~) = A(~, N~, A~) • •  N~, A~) (36) 

Hence 

~< IAII,(~, N~, A0 + IA=I,(~=, N2, A=) + (U(A1, A=)) (37) 
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where ( U )  is the average over A1 and A2 of the interaction energy between 
A~ and A2. [This may require passing to a subsequence in (35) for Az and A2.] 

Now we are in the same position as in (16); the existence and appropriate 
convexity properties of ~(e) and e(E) follow. See Ref. 5, Section VIII for 
details. 

The one essential difference from the systems studied in Ref. 5, Section 
VIII is that for jellium we do not obtain convexity of e as a function of p, 
but only as a function of  or. This lack does not alter the equivalence of  the 
canonical and microcanonical ensembles. 

3.7. The Grand Canonical  Ensemble 

I f  one considers the grand canonical ensemble (GCE) for fixed A, fixed 
background density p, and fixed chemical potential t~, then the GCE partition 
function E will exist. From the results of  Section 3.5 the thermodynamic limit 
of~x = ]A1-1 In E will exist and rc = ptz + g(p) as in Theorem 7.1 of  Ref. 5, 
Section VII. If, on the other hand, one defines E for neutral jellium by re- 
quiring that p = N/[A[  for each N, then E will diverge, even for finite A. 
This is a consequence of  (3) that g(N ,  A) ,,~ N 4/3 for large N. In the quantum 
case with fermions, this divergence will not occur since the kinetic energy is 
proportional to N 5/8. Although the thermodynamic limit of  r~ for neutral 
jellium would then exist, it would not be equivalent to the canonical partition 
ensemble because of  the lack of convexity of the free energy in p. 

4. A D D I T I O N A L  POTENTIALS 

As was shown in Ref. 5, additional short-range forces among the particles 
can be included without any conceptual difficulty, but with a great deal of 
technical difficulty, provided they are tempered and provided that these forces 
are integrable. This means that hard cores are excluded. We do not say that 
the thermodynamic limit does not exist when hard cores are present--it  
probably does--but  only that our method is not adequate. The difficulty 
arises in (11), where In ZK ~ is estimated by Jensen's inequality in terms of  
(U) .  We made this estimate in order to show that the energy of the particles 
in DK was not too large. If  some other method could be found to show this, 
then perhaps hard cores could be included, but in our estimate, ( U )  = + ~  
and In ZK D >1 - - ~  when hard cores are present. 

There is another serious difficulty when additional potentials, even nice 
ones, are present. The scaling relation of  Section 3.3 does not hold, and hence 
the continuity with respect to p that was used in Section 3.4.1 cannot be 
established that way. 
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5. Q U A N T U M  M E C H A N I C A L  PARTICLES 

We first remark that it is immaterial for our purposes whether the particles 
are bosons or fermions. In contrast to the situation for real particles, H- 
stability (2) holds in the classical sense and therefore Fermi statistics is not 
required. We shall construct the proof  for fermions and it will obviously be 
valid for bosons as well. Dirichlet boundary conditions will be employed, i.e., 
~b = 0 on the boundary of  A. 

5.1. Canonical Ensemble (Spherical Domains)  

By well-known arguments (see Ref. 5, Section II), a lower bound to ZK 
can be obtained by constraining the particles to lie in various subdomains. 
In this way we arrive at precisely the same inequality (9) as for the classical 
case. The problem is to show that In ZK D is not too small. For  this purpose 
it would be sufficient to find one wave function ~b for the MK particles in DK 

such that (HK) = (~b, HK~b) < (positive constant)MK, where HK is the total 
Hamiltonian of the MK particles in D~:, including the background self-energy. 
Then, by the Peierls-Bogoliubov inequality, 

In Zx D /> --/3(HK) (38) 

A natural suggestion would be to take a determinantal wave function 
that vanishes on the boundary of DK, but this will not work for the reason 
that the single-particle density will not be a constant and consequently the 
estimate (U)D~: < 0 [Eq. (11)] will not hold. On the other hand, suppose one 
could find MK points Y = {Yl .... , Y~K} in Dx such that: 

(a) U(Y) < (positive constant)MK. 
(b)  ]y~ - Yil > 2h for some fixed h > 0. 
(c) The distance of y~ to the boundary of DK is > h for all i. 

Then one could construct a product wave function in which the single-particle 
wave functions have support in balls of  radius h centered at the y~ and which 
are spherically symmetric about the y~. The kinetic energy would be propor- 
tional to h-2. Due to the peculiar shape of Dx, we are unable to find such a 
Y. What Eq. (11) shows is that there certainly exists a Y satisfying condition 
(a) but we do not know if it satisfies (b) and (c). 

It is in fact possible to find a Y such that condition (a) is satisfied and 
condition (b) is ef fect ively  satisfied. To do this, define 

MK 

U'(Y) = U(Y) + ~ L(y ,  - yj) (39) 
i < f  

where U(Y) is the Coulomb potential as before and 

L(y) = 2(~/]y]) 2 for lYl-< 1 

= 0 for lYl > 1 (40) 
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Using (I1), we obtain 

<U'>o~ = <U>DK + (M'~)ID~[-2~ f L ( x - y )  dxdy 
K 

Therefore there exists a Y such that 

U'(Y) ~< 4rraMKp (42) 

Let d~ = �89 min{1, minj,~ly ~ - yjl}. Construct a product trial function 4, using 
single-particle functions {~}~21 centered at y~ and having support in a ball 
of radius d~ of the form 

~0~(x) = (2~d~)-l~21x - y~[-1 sin[~r[x - y,l/d~] (43) 

The kinetic energy of ~0~ is (rr/d~)2/2. The potential energy of 4J can be evaluated 
as follows: The particle-particle energy is the same as if the particles were 
located at y~, by Newton's theorem. The interaction of a smeared-out particle 
with the background is changed by the amount 

f dx f dy Ix - y[-l[~0,(x + y , )2_  ~(x)] p 
-/I xl < d~ d ly l  < as 

= ~:p d~ 2 ~< @ (44) 

where ~ is a constant, assuming that the ball of radius d, lies entirely in DK. 
Thus the total energy <4J, Hx$> is less than 

U'(Y) + ~pM~: + 2zrZMK <. (2*r2)MK[1 + 2~rp + ~p(27r2) -1] (45) 

This result is exactly what conditions (a) and (b) would give. 
Condition (c) is more difficult, for it requires that the coordinates in Y 

are not too close to the boundary. If  one tries to introduce 

U"(Y) = U'(Y) + ~ d(y,) -2 

where d(y~) is the distance to the boundary, one will find that (U'% = / D  r O0 

since d(x) -2 is not integrable. 
Since we are unable to deal with this problem directly, we shall modify 

our basic construction for the ball packing in such a way that the balls have 
a minimum spacing of some length independent of  K. 

a ~o Let { k}k= 0 be a sequence of balls of  radii Rk = R0'(1 + p)k(1 �89 k) 
with 0 = (1 + p)-~, p = 26, and Ro' chosen so that plB0l = 1. Let Nk = 
plBk[, whence N~ is an integer. As shown in Ref. 5, Section IV, it is possible 
to pack BK with nK_ j balls By so that the distance of every ball to the boundary 
is not less than 4h and the distance between balls is not less than 8h, where 
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h = Ro'(1 - 0)/8. As in Section 3.1, the par t  o f  Bz~ not  covered by the 
packing will be called DK. 

Let  us label the individual balls in the packing of  B~: by a superscript  i, 
namely  B ~, and let R ~ be its radius. Around  B ~ we construct  two concentric,  
spherical shells S ~ and T ~ of  radii (R ~, R ~ + h) and (R ~ + h, R ~ + 2h), respec- 
tively. Inside BK we also construct  two concentric,  spherical shells S~: and 
TK o f  radii (R~: - h, R~:) and (RK -- 2h, RK -- h), respectively. All these shells 
are disjoint and lie in DK and we denote  by DK' c DK the ' complement  o f  the 
shells in DK, and define D~:" = Dr.' t_) T ~ w TK. 

We wish to find a Y = {Yl ..... y~u,:} with y~ e D) ,  and a corresponding 
p roduc t  wave function ~b such tha t  <HK> is not  too large. To  this end, let 

where 

f ( y )  = 1, y e DK' 

= 0, y ~ D ~  

= f ~ ,  y e T  ~ 

= fK, y e T K  (46) 

f~ = 1 + [(R' + h) a - (R~)al[(R' + 2h) a - (R' + h)a] -1 < 2 
(47) 

fK = 1 + [(R~c - h) a - (R~: - 2h)a]-l[RK a - (RK -- h) a] < 3 

whence 

and similarly for  TK, SK, and f f  = IDKI. 
Let  

M E  

F(Y) = 1-~ f(Y')  
~ = 1  

and let 

<U%=f F(Y)U'(V)/f FOZ) (48) 

The  par t  involving L is [using (41)] 

( M K ) I D K I - 2 f : f ( x ) f ( y ) L ( x - - y )  <<.9.47rSMKp 

s ince f (x )  ~< 3. The  par t  involving U(Y) is 

�89  d x f  d y l x - y l - l [ 1 - f ( x ) ] [ 1 - f ( y ) ]  
~ D  K J D  K 

- �89 dxfDKdy Ix -- yI-if(x)f(y) (49) 
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The second term is negative. The first is the Coulomb energy of  double shells, 
each pair of  which is neutral and spherically symmetric. By Newton's theorem, 
this is just the sum of the self-energies of each pair. Let Ek be the self-energy 
of the two shells S and T surrounding a ball Bk in the packing and let W~r 
be the self-energy of  the shells SK and T~c, Then 

R ' - - I  

(U')r <~ 367r3MKo + ~ nr-yEj + WK <~ const x Mr  (50) 
J '=0  

The latter inequality comes from an elementary calculation of  Ee and WK. 
The conclusion is that there exists a Y with y, ~ D)  such that U'(Y) is 

bounded by a constant times I DKt. Now we construct a trial function ~b as 
before with ~o, given by (43) except that 

d~ = �89 min{2h, 1, minly, - Y;I} 

Then 

]BK} - t  In Zs  D >/-/31B~I-l<~, n ~ >  

/> - /3 x const x IDK] IB~1-1 (51) 

and this goes to zero as K---~ oo like 7 K [Eq. (13)]. Thus the thermodynamic 
limit is established as in the classical case. 

5.2. Canonical Ensemble (General Domains)  

Let 0 be fixed. We take a regular sequence of domains {Aj}~~ 1 tending 
to infinity which satisfies conditions A and B of Ref. 5, Section V. Also, 
[AJIo = Z In addition, we require some conditions on the sequence which 
are not required in the classical case. These are the following: 

(i) Let h > 0 and let Aj n and A~ h be the domains 

Aj ~ = {x ~ R3lx r Aj, d(x; 0Aj) ~< h} 
(52) 

A~ n = {x s Ral x ~ Aj ~ u Aj, d(x; OAj ~) ~< h} 

where d(- ; .) is the Euclidean distance. We require that I AJ ~ 1[1A~I be bounded 
in j for each fixed h. 

(ii) Consider the charge density 

~;~(x) = 1, x ~ h j  ~ 

= - l A ? i / I i P l ,  x A p  (53) 

Thus ~s ~ is neutral. Let ~0j~(x) be the Coulomb potential of  %. We require 
that there exists a function C(h) < oo such that for all x s A~ ~ • Aj ~ u Aj 

ko?(x)l < C(h) (54) 



The Thermodynamic Limit for Jellium 305 

and that 

lim C(h) = 0 
/ z ~ 0  

(iii) Let Ej n be the Coulomb self-energy of the double layer crj n. We 
require that 

lim IAj]-IEjh = 0 (55) 
j = o o  

and 

Conditions (i) and (ii) obviously imply (iii) since 

E, �89 + IA, I] 
x 

I + ]Aj I]/IAjl-->0 

by the Van Hove limit. 

(iv) Define fi, jh, ~ h ,  ash(x), and/~j~ similarly to the above except x r Aj 
(resp. x r Aj ~ u Aj) is replaced by x e Aj (resp. x e Aj\Aj~). That is, the double 
layer ajh is now inside Aj. We require that 

lim [Aj]- 1/~jh _+ 0 (56) 
j---} oo 

We do not require that the analogs of (i) and (ii) hold. 
It is clear that for any reasonable sequence of domains, such as cubes or 

ellipsoids, these conditions will be satisfied. We shall not attempt to deter- 
mine geometric conditions on the Ay so that (i)-(iv) hold. 

Let Aj contain j particles. As in the classical case, we derive a lower 
bound for Z(Aj). The kinetic energy for Dj can be handled as in Section 5.1. 
The only essential difference from inequality (15) is that we have to add the 
self-energy of the double layer #j.h inside Aj and that of the double layers of 
the balls in the packing of Aj. Call this latter quantity W(j).  Thus, on the 
right side of the inequality we must add _~.ff.jh _ ~W(j) .  Using condition 
(iv), we have that 

lim infgj./> g(/3, p )  (57) 

An upper bound for Z(Aj) is also obtained as in the classical case (18). 
For the domain Dj we choose a vector state ~b and have to compute 

E(qO = (HK) + (U(Dj ,  Ah) (58) 

The kinetic energy part of (HK) can be handled as in Section 5.1. If  My is 
the number of particles in Dj, we have to find Mj points in D~! = Dj - 
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{U s * w Aj ~} in such a way that E(~b) is not too large. The novel feature is 
that U(D s, Aj) involves the additional term 

M, fA w(xO where w(x) = pu(y)]x - y ] - l d y  
i = 1  I 

and pj(y) is the average charge distribution (including the background) in 
Aj in the canonical distribution. Although Aj is neutral, w r 0 because Aj 
is not spherical. To find these Mj points we again average over all allowed 
configuration in D~. 

The self-energy of the double layers S ~ and T ~ is small for the same 
reason as in Section 5.1. The problem then reduces to computing Ej h as 
defined in condition (iii), together with the energy of the charge distribution 
~rj h in the potential w. Condition (iii) states that [Aj1-1Ejh--->0, so we can 
ignore it. The latter contribution, A j, can be bounded as follows: 

[A;I= f [ 
=[fA dxfdYP (x)lx-Yl-b ?(x) I 

= p f . ,  dx pj(x)gojh(x) ~< pC(h) f , j  dx Ipj(x)l 

<. pC(h)f Ip+(x)l + lo-(x)l 2jpC(h) (59) 
J 

where p+ = p is the background charge and p_(x) is the average particle 
charge distribution. 

Now we divide by IAjl = j and let j - +  or. For each fixed h we obtain 

lim sup gj <~ g([3, p) + flpC(h) (60) 
j--* oo 

Since h is arbitrary, we can now let h -+ 0 and, recalling condition (ii), obtain 

lim gj = g(fl, p) (61) 
y--,  co 

which is the desired result. 

5.3. Scal ing Rela t ions  

In Section 3.3 we showed that g(fl, p) = p(1 - In p) + p~(fiplls). Such 
a simple relation will not hold quantum mechanically. To obtain a similar 
result quantum mechanically, we have to add another parameter; the simplest 
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is ~, the square of the electric charge. Thus H = K + U-+  K + ~U, where 
K is the kinetic energy operator. 

We make a scale change which now involves ~: 

p, = p~13, /3' = /37/-2, ~' = ~7/, A/  = ~-IAj  (62) 

Then, as in Section 3.3 [Eq. (22)], 

IAjlg(/3, p, ~; Aj) = IA/lg(/3n -~, pw~, =w; A/) (63) 

Again, choosing ~/ = p-1/3, and taking the limit j - +  0% we obtain 

g(/3, p, cO = pg(/302/3, 1, s O -  1t3) (64) 

This equation tells us nothing that we did not know before, i.e., ~ is an 
inessential parameter. But it does tell us something important about the 
continuity with respect to p. Define ~, =/3~. Then 

In Z = In Tr exp(- /3K - 7U) (65) 

is a jointly convex function of (/3, 7) for /3 > 0. Thus, when ~, > 0, the 
thermodynamic limit g(/3, p, y/3-1) is convex, and hence continuous, in (/3, 7). 
Hence the function g(x, 1, y) is continuous in (x, y) when x, y > 0. Therefore 
g(/3, p, ~) is continuous in p for p > 0. 

5.4. Propert ies of  the Thermodynamic  Limit and Related 
Questions 

The results given for the classical case in Sections 3.4-3.6 and 4 hold 
for the quantum case. The conclusions of  Section 3.7 have to be modified. 
In summary one has: 

(i) Uniformity and continuity of  the limit. 
(ii) Unusual behavior of  the pressure and compressibility. 
(iii) Equivalence of  canonical and microcanonical ensembles. The exis- 

tence of the thermodynamic limit of  the microcanonical ensemble includes as a 
special case the existence of  the limiting ground state energy per unit volume. 
This is also true classically. 

(iv) Existence of the grand canonical pressure even for strictly neutral 
systems because for large p, the quantum kinetic energy, which behaves like 
p 5/3, will dominate the electrostatic _p4;~ term. We shall not prove this 
statement since the lack of convexity in p prevents the grand canonical 
ensemble from being equivalent to the canonical ensemble. 

(v) The possibility of adding tempered potentials, with the same caveat 
as in Section 4. 
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A P P E N D I X .  A LOWER B O U N D  FOR THE CLASSICAL A N D  
Q U A N T U M  M E C H A N I C A L  G R O U N D - S T A T E  
E N E R G Y  

Consider a bounded, measurable set A with a uniform charge density 
p and N point particles of  charge - 1. We do not assume that A is spherical, 
that the points are constrained to lie in A, or that the total charge is zero. 

To find a lower bound for the total electrostatic energy we use an idea 
of  Onsager (12~ to replace point charge distributions by charges smeared 
around the initial points. In fact one can show, by taking functional deriv- 
atives, that the best smearing is a uniform charge distribution inside a ball 
of  radius a. 

We define 

UBB 
U, 

g ~ j  

0~j(a) 

O,(a) 
Then, with X = {xl,..., xN} 

N 

i = 1  i < ]  

u(x )  = UBB + C ~, + ~ 
~=i i,] 

+ Z ( v ,  - o , )  
i 

1 

+ ( v , ;  - 0,,) 

Let us consider these terms individually: 

the self-energy of  the background; 
the interaction energy of the particle i at position x~ with the 
background; 
the interaction of  two particles at positions x~ and xj; 
the interaction (or twice the self-energy when i = j )  of balls of  
total charge - 1  with centers x~ and xs; 
the interaction of such a ball with the background. 

(0  

(/3) 

(e) 

(0  

The (a) terms are evidently positive, being the total electrostatic energy 
of the background charge and the charged balls. 

In (8), a term U~j - 0~j is zero if the two balls do not overlap by Newton's 
theorem. For overlapping balls, a simple calculation shows that U~j - 0~j > 
0. Thus (3) is positive. 

For  (/3) we calculate 

u~ - Oi/> - ( 2 , # 0 p ~  2 (A.1) 

The above is an equality whenever the ball lies completely in A. 
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F o r  (~,) 

t),, = 6/(5a) (A.2) 

Our lower bound is (/3) + (~), and the best bound is obtained when a is 

am~x = p-1/3(3/4~r)lla = rs (A.3) 

With this value we obtain 

U(X) /> - 0 . 9 N r 7 1  =-0.9Npl/a(47r/3)  ~/a (A.4) 

for all X. 
For the quantum mechanical case, when the particles are spin-�89 fermions, 

we consider a sequence of  domains {Aj} which tend to infinity in the sense of 
Van Hove and we constrain the particles to lie in Aj. We also suppose that 
p]Aj[ = j, the number of particles, although this neutrality restriction is not 
essential in what follows. 

Let 

Ej - inf<@lHl@>lAJ1-1 /> inflAJlo -l<~blgl~b> + inflAA-l<4'[ U I 4 ~ ) ,  

For  m = 1 and j large 

inf@, K4J) ,~, jO2/a(6/5)(37rZ) 2/3 = jr~- 2(6/5)(97r/4)21a 

= 2.21jr~ -2 Ry (A.5) 

Therefore, to leading order in j, 

j - t H  >>- r~-2(2.21 - 0.45rs) Ry (A.6) 

It makes sense here, unlike the situation for the classical or the Bose 
problem, to ask for the rs that gives the lowest ground-state energy per particle. 
We obtain 

r, = 9.82 (A.7) 

and 

j - ~ H  >1 -0 .0229 Ry (A.8) 
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